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Abstract
Breeding bermudagrass (Cynodon spp.) involves creating progeny combining multi-

ple desired traits from hybridization and ensuring their adaptation and performance

to various environments through rigorous testing. Turfgrass breeding programs in

the southern United States collaborated to breed new bermudagrass lines for drought

resistance. Thus, the objectives of this study were to evaluate advanced bermuda-

grass lines and to characterize their genetic gain in performance traits, reliability,

genotype-by-environment interaction (GEI), and stability. The study, encompass-

ing 34 advanced lines and three standard cultivars planted in randomized complete

block designs with three replications, was carried out at eight locations across the

Abbreviations: BLUP, best unbiased linear prediction; ER, establishment rate; FCR, fall color retention; GEI, genotype-by-environment interaction; GGE,

genotype plus genotype-by-environment interaction; GLI, green leaf index; IP, inflorescence prolificacy; ME, mega-environment; NCSU, North Carolina

State University; NDVI, normalized difference vegetation index; NTEP, National Turfgrass Evaluation Program; OSU, Oklahoma State University; PGC,

percent green cover; RGB, red, green, and blue; RP, recovery potential; SG, spring green-up; TPI, turf performance index; TQ, turfgrass quality; UAS,

unmanned aircraft system; UF, University of Florida; UGA, University of Georgia.
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Oklahoma Turfgrass Research Foundation;

Oklahoma Agricultural Experiment Station southern United States from 2020 to 2023. Experimental lines OSU2073, OSU2081,

OSU2082, TifB20201, and TifB20205 showed improved drought response relative

to the drought resistant cultivar TifTuf with significant genetic gain in the mega-

environment (a group of locations that share similar environment conditions in which

a crop has consistent performance across them) of Dallas, TX, and Stillwater, OK.

Substantial GEIs were observed under drought stress across the southern United

States. This study highlights the continuous genetic gain made in breeding efforts to

improve drought resistance of bermudagrass and identifies new cultivar candidates

for conserving irrigation water to the turf industry.

Plain Language Summary
Breeding and selecting drought-resistant bermudagrass is essential due to the increas-

ing scarcity of water for irrigation. This study evaluated 34 advanced bermudagrass

breeding lines and three standard cultivars across eight locations from 2020 to 2023

to assess drought resistance and performance. Five experimental lines—OSU2073,

OSU2081, OSU2082, TifB20201, and TifB20205—showed better drought resis-

tance than the widely used TifTuf, a leading drought resistant cultivar. These

lines also performed reliably in key locations like Dallas, TX, and Stillwater, OK,

showing progress in breeding efforts. This research highlights ongoing improve-

ments in bermudagrass drought resistance, offering new bermudagrass options for

water-efficient turf management in lawns, sports fields, and landscapes.

1 INTRODUCTION

Bermudagrasses (Cynodon spp.) are warm-season perennial
sod-forming grass species widely distributed in tropical and
subtropical regions in the world (Beard, 1973; Taliaferro
et al., 2004). There is enormous morphological variation
within and among bermudagrass species, ranging from small,
fine-textured plants to large, leafy robust plants that suit
different purposes, such as turf, pastures, and soil stabiliza-
tion, etc. (Harlan & de Wet, 1969; Taliaferro et al., 2004).
Common bermudagrass [Cynodon dactylon (L.) Pers.] and
interspecific hybrid bermudagrass [Cynodon dactylon (L.)
Pers. × Cynodon transvaalensis Burtt-Davy] are known for
their high turfgrass quality (TQ), fast establishment rate (ER),
quick recovery from wear damage, and tolerance to heat and
drought stresses (Beard, 1973). These attributes make them
highly sought after as turfgrass on residential lawns, golf
courses, and athletic fields in the southern and transitional
climatic regions of the United States. For example, bermuda-
grass is the dominant species used on golf courses in the
United States (Shaddox et al., 2023). It was estimated that
bermudagrass is grown on ∼20–25 million ha (for turf, forage,
pasture, and soil erosion control uses), providing substan-
tial economic impact and ecological service (Taliaferro et al.,
2004).

The wide use of bermudagrass has been achieved primarily
through its genetic improvement and associated management
practices. Programmatic turf bermudagrass breeding started
in 1946 at the U.S. Department of Agriculture Agricultural
Research Service (USDA-ARS) Coastal Plain Experiment
Station in Tifton, GA (Burton, 1974). Since then, breed-
ing programs have released a number of cultivars (Baxter &
Schwartz, 2018; Wu et al., 2013, 2014, 2020). With rapid
urbanization and frequent drought conditions compounded
with warming climates in recent decades, previously non-
irrigated lands have been converted to irrigated lawns and
landscapes, which has exacerbated water scarcity in many
locations, especially in the southwestern United States. Tur-
fgrass drought resistance is one of the most valued traits
for homeowners in Texas, Florida, Georgia, Oklahoma, and
North Carolina (Ghimire et al., 2016). With full adoption,
drought resistant turfgrass cultivars would conserve freshwa-
ter and generate up to $142.4 million of total economic output,
triggering the development of drought resistant bermudagrass
cultivars (Chung et al., 2018).

In the past decade, the turfgrass breeding programs at
six universities, including Oklahoma State University (OSU),
University of Georgia (UGA), North Carolina State Uni-
versity (NCSU), Texas A&M University System, University
of Florida (UF), and University of California–Riverside
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collaborated to develop new bermudagrass cultivars with
improved drought resistance and turf performance. In 2014,
UGA and the USDA-ARS released ‘DT-1’ (commercial name
TifTuf), which exhibited improved drought resistance and
high TQ compared to Tifway (Schwartz et al., 2018). Later,
OSU released ‘OKC1131’ (Tahoma 31) due to its improved
water use efficiency, freeze tolerance, and high TQ (Amgain
et al., 2018; Wu et al., 2020). These breeding programs
continued their collaborative efforts with the major aim to
further improve drought resistance. In addition, breeders also
strive to combine multiple favorable traits into new bermuda-
grass cultivars. Freeze tolerance, a major factor contributing
to winter survivability, is critical for bermudagrass to adapt
to transitional climatic regions (Anderson & Martin, 2002).
Chilling temperature (2˚C–10˚C) tolerance (evaluated as fall
color retention [FCR]) is an important trait for bermudagrass
use in the southern United States, where an extended green
period is desirable (Fontanier et al., 2020). Fast ER is a crit-
ical trait for sod production since fast growing cultivars can
shorten the interval between two harvests and recover faster
from damages. Turfgrass users, especially golf course super-
intendents prefer cultivars with few or no seedheads (Kane
& Miller, 2003). Seedheads diminish aesthetic turf qualities
and playability and divert energy from vegetative growth to
reproductive development (Kane & Miller, 2003). Frequent
mowing is needed to remove seedheads, which increases
management costs.

Unlike major food crops, bermudagrass is a perennial crop
and its cultivars tend to be marketed and produced across a
much larger geographic area. Therefore, characterization of
genotype-by-environment interaction (GEI) plays a critical
role in the identification of testing environments and the selec-
tion of germplasm for varietal release (de Leon et al., 2016).
It would be ideal if new cultivars have both high turf per-
formance traits and stability across the target environments
(Gouveia et al., 2020, 2021, 2024; Windhausen et al., 2012;
Yan, 2015; Yan & Tinker, 2006; Yan et al., 2000). In this
study, we evaluated drought response and turf performance
of new advanced lines from OSU, UGA, UF, and NCSU at
eight locations in six southern states. Accordingly, the objec-
tives of this study were to (1) quantify the genetic variability
and GEI of drought response and performance traits and (2)
identify high performing genotypes under drought and esti-
mate genetic gains achieved by the bermudagrass breeding
programs.

2 MATERIALS AND METHODS

2.1 Plant materials and field experiments

Thirty-four bermudagrass experimental lines (Table 1) from
OSU, UGA, UF, and NCSU and three standard cultivars DT-

Core Ideas
∙ New breeding lines exhibited improved drought

resistance, high turfgrass quality, and stable perfor-
mance.

∙ Genotype-by-environment interaction was signif-
icant for drought performance in the southern
United States.

∙ The south-central United States is a unique region
for evaluating drought resistance.

1 (marketed as TifTuf), Tifway, and OKC1131 (Tahoma 31)
were planted at eight locations, including Stillwater, OK;
Dallas, TX; Riverside, CA; Jackson Springs, NC; Griffin
and Tifton, GA; and Jay and Citra, FL, in the summer of
2020 (Table S1). Weather data (average monthly maximum
and minimum temperatures, monthly accumulated precipita-
tion, and average monthly relative humidity) from 2020 to
2023 are presented in Figures S1 and S2. Weather data were
obtained using the R packages “nasapower” (Sparks, 2018)
modified from Gouveia et al. (2025). The experimental design
for each location was a randomized complete block design
with three replications. Six plugs (10.2 cm × 10.2 cm ×
5.0 cm) cultivated in greenhouse media (BM2, Berger) were
transplanted into an approximately 1.5 m by 1.5 m plot with
0.2 m alleys between neighboring plots. Detailed management
information for fertilization, mowing, weed management,
and irrigation is reported in Table S1. From 2021 to 2023,
plots were subjected to slightly varied management practices
according to the bermudagrass management recommendation
in each state (Table S1). No supplementary irrigation was
provided during summer to induce drought periods. In fall,
irrigation was resumed to foster injury recovery post drought
conditions.

2.2 Data collection

One month after transplanting, percent green plot cover was
used to evaluate ER. This trait was evaluated once from
unmanned aircraft systems (UAS) imagery at all locations,
except for Riverside, CA, where it was assessed visually due
to the absence of UAS and Stillwater, OK, where it was quan-
tified using the smartphone application Canopeo (Patrignani
& Ochsner, 2015). In the spring of 2021, 2022, and 2023,
spring green-up (SG) was visually rated monthly on a 1–9
scale according to the National Turfgrass Evaluation Program
(NTEP) protocol (Morris & Shearman, 2000). Inflorescence
prolificacy (IP) was visually rated once a year before drought
on a 1–9 scale, where 9 = most abundant seedheads and
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T A B L E 1 Bermudagrass entries evaluated at eight locations from 2020 to 2023.

Entry Source Entry Source Entry Source Entry Source
FB1628 UF OSU2026 OSU OSU2081 OSU TifB20204 UGA

FB1630 UF OSU2034 OSU OSU2082 OSU TifB20205 UGA

FB1633 UF OSU2035 OSU OSU2088 OSU TifB20206 UGA

FB2001 UF OSU2037 OSU OSU2094 OSU TifB20207 UGA

FB2002 UF OSU2039 OSU OSU2101 OSU TifB20208 UGA

NCWIN10F NCSU OSU2043 OSU OSU2102 OSU TifTuf Standard

OSU2015 OSU OSU2066 OSU Tahoma 31 Standard Tifway Standard

OSU2018 OSU OSU2073 OSU TifB20201 UGA

OSU2021 OSU OSU2074 OSU TifB20202 UGA

OSU2022 OSU OSU2075 OSU TifB20203 UGA

Abbreviations: NCSU, North Carolina State University; OSU, Oklahoma State University; UF, University of Florida; UGA, University of Georgia.

1 = no seedheads. TQ (1 to 9 scale, 1 = completely dead or
dormant turf, 9 = outstanding turf, and 6 = acceptable quality
turf) was collected monthly under non-drought conditions and
weekly under drought conditions. During the drought recov-
ery phase, recovery potential (RP) was visually rated on a
1–9 scale, where 9 = full recovery and 1 = dead or dormant.
FCR was visually rated monthly before dormant on a 1–9
scale (1 = brown color and 9 = full green) in the fall of 2021
and 2022. All visual evaluations were performed according
to the NTEP protocols (Morris & Shearman, 2000). Detailed
measurement dates for all traits assessed at each location are
provided in Table S2.

To evaluate turf performance under drought and non-
drought conditions, UAS were used to collect RGB (red,
green, and blue) and multispectral images. The UAS flights
were conducted at 75% side and front overlap with a flight alti-
tude of 40 m. The flight times were 2 h within solar noon. The
cameras, UAS platforms, and flight software for each loca-
tion are listed in Table S3. Images from each location were
uploaded to a server located at the UGA-Tifton campus. The
workflow for image processing was adapted from a previous
study of turfgrass field trials (Zhang et al., 2019). Briefly,
RGB images were processed and stitched in Pix4Dmapper Pro
4.2.27 (Pix4D SA) to generate an RGB orthomosaic using the
standard template of “Ag RGB.” Multispectral images were
processed using the same software and template of “Ag Mul-
tispectral,” resulting in maps of red and NIR bands. These
georeferenced orthomosaics were exported in a TIFF for-
mat for further analysis. From RGB orthomosaic, green leaf
index (GLI) was computed with normalized values for red (R),
green (G), and blue (B) bands from the digital image using
Equation (1). Normalized difference vegetation index (NDVI)
was computed from red and near infrared (NIR) bands using
Equation 2.

GLI = (2𝑔 − 𝑏 − 𝑟)∕ (2𝑔 + 𝑏 + 𝑟) , (1)

where g = G/(R + G + B), b = B/(R + G + B), and
r = R/(R + G + B),

NDVI = (NIR − red)∕ (NIR + red) . (2)

Shape files for each location were created in ArcMap ver-
sion 10.4.1 (Esri), outlining individual plot boundaries with
polygons. The size of the polygons varied slightly in each
location to capture the majority of the established plot while
excluding a margin (Table S3). Averages of GLI and NDVI
for each plot were extracted within each polygon in a Python
script with packages rasterio (Gillies, 2019), geopandas, and
gdal. The percent green cover (PGC) was calculated as the
number of pixels with values larger than the threshold value
of GLI divided by the total number of pixels within a plot.
The GLI threshold value was determined and adjusted through
trial and error in each location due to the different sensors
used.

2.3 Statistical analyses

Analysis of variance (ANOVA) for all traits was con-
ducted using the MIXED procedure within SAS 9.4 (SAS
Institute). The analysis was conducted separately for each
trait under drought and non-drought conditions. The annual
mean value of all data collected for each trait under con-
ditions without drought was used for data analysis. Under
drought conditions, means of the last two TQ, PGC, and
NDVI (showing more drought symptoms; Figure S3) in
each year were used for data analysis at each location
for better drought response separations. Variance compo-
nents were estimated using Type III method of moments
estimation. Entry, location, and year were considered ran-
dom effects because the information on trait performance
of this bermudagrass set in each location was unknown and
year and rating date were not chosen based on expected
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environmental conditions (Yu et al., 2022). The reliability
(i2) (Bernardo, 2002) for each trait was calculated by the
Equation (3) adopted from Hallauer (1970).

𝑖2 = 𝜎2𝐺∕
(
𝜎2𝐺 + 𝜎2𝐺𝑌 ∕𝑌 + 𝜎2𝐺𝐿∕𝐿 + 𝜎2𝐺𝐿𝑌 ∕𝐿𝑌

+ 𝜎2𝐸∕𝑅𝐿𝑌
)
, (3)

where σ2
G is the variance of genotype, σ2

GY is the variance
of interaction between genotype and year, σ2

GL is the vari-
ance of interaction between genotype and location, σ2

GLY is
the variance of interaction between genotype, location and
year, σ2

E is the error variance, R is the number of repli-
cations, Y is the number of years, and L is the number of
locations. To summarize line performance, the turf perfor-
mance index (TPI) was calculated as the number of times
each entry appeared in the top statistical group for each trait in
each location and year once significant genotype-by-location
and genotype-by-year interactions were identified (Engelke
et al., 1995). The identification of mega-environment (MEs)
and the ranking of genotypes based on mean and stability
was realized through genotype plus genotype-by-environment
interaction (GGE) biplot analysis and the biplots were cre-
ated using the R package metan (Olivoto & Lucio, 2020).
Under drought conditions, mean values of the traits collected
on the last one to two dates were used for data analysis due
to varying weather conditions (Figures S1 and S2), duration
of drought, and number of evaluations across locations. For
traits collected without drought stress, the mean value of all
collected data for a trait was used for analysis. The best lin-
ear unbiased prediction (BLUP) values were estimated for all
phenotypic data using the linear mixed model described in
Equation (4):

𝐲 = 𝜇𝟏 + 𝐙𝟏𝐮 + 𝐞, (4)

where y is the vector of phenotypic values; μ is the overall
mean; 1 is the vector of ones; Z is the incidence matrices for
random effects; u is the vector of random effects of location,
entry, year, blocks nested within location, interaction between
location and year, interaction between entry and location,
interaction between entry and year, and interaction between
entry, location, and year; and e is the random vector of errors.
The percentage relative genetic gain was calculated by divid-
ing the difference between the BLUP mean of the selected top
10% entries and BLUP mean of the checks, by the genotypic
predicted value of the checks. The genetic gain bar chart was
created using the R package ggplot2 (Wickham, 2016) follow-
ing the format of chart generated by Gouveia et al. (2025).
Pearson correlation coefficients for measurements were visu-
alized in R (v 4.3.1) using the package metan (Olivoto &
Lucio, 2020).

3 RESULTS

3.1 ANOVA and reliability

The ANOVA and variance components for each trait under
drought and non-drought conditions are given in Table 2 and
Table S4, respectively. Under drought conditions, highly sig-
nificant (p < 0.0001) genotype effects existed for all traits.
All interactions involved with genotype were highly signifi-
cant (p < 0.0001) for all traits except for the genotype-by-year
interaction for TQ and PGC. The reliability estimates for
traits collected under drought ranged from i2 = 0.84 (PGC)
to i2 = 0.90 (TQ). For traits collected without drought, sig-
nificant (p < 0.05) genotype effects were found for all traits.
Except for SG, IP, and RP, significant genotype-by-year inter-
actions were found for all traits. The genotype-by-location
interaction was not significant for ER, but significant for all
other traits. The reliability estimates for the traits without
drought ranged from i2 = 0.50 (NDVI) to i2 = 0.89 (PGC).

3.2 Genotype-by-environment interactions

For traits collected under drought conditions, the GEI for TQ
was visualized in Figure 1a. Two MEs were observed. Dal-
las and Stillwater were in one ME and the rest locations were
in another. The first two components explained 84.0% of the
total phenotypic variance. Experimental line OSU2073 was
the top performer in Dallas and Stillwater ME, followed by
OSU2081. TifB20201 was the top performer in another ME,
followed by TifTuf. The GEI for PGC showed three MEs
(Figure 1b). Griffin was a separate ME while Dallas and
Stillwater were grouped in one ME and the rest locations in
another. The first two components of PGC explained 84.3%
of the total phenotypic variance. The best performer for the
ME of Dallas and Stillwater was OSU2073. TifTuf performed
well in the ME of Citra, Tifton, and Jackson Springs. The best
performer for the Griffin ME was FB1628. Two MEs were
observed for NDVI (Figure 1c). Like TQ, Dallas and Still-
water were grouped in an ME while the rest locations were
in another. OSU2082 was the best performer for the ME of
Dallas and Stillwater while TifTuf was the best performer for
another ME. Consistent for all traits collected under drought
conditions, Stillwater was the location that showed the largest
variation among genotypes.

For turfgrass performance under non-drought conditions,
the GEI was identified for all traits except for PGC (Figure
S4), which resulted in the separation of the target envi-
ronments into two or more MEs. For TQ, the first two
components explained 81.1% of the phenotypic variance
(Figure S4A). Besides Stillwater, all locations were grouped
in one ME. Tahoma 31 and TifB20208 were best performers
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T A B L E 2 Analysis of variance and variance component estimates of turfgrass quality (TQ), percent green cover (PGC), and normalized

difference vegetation index (NDVI) under drought conditions.

Source of variation

TQa PGCb NDVIc

Drought Drought Drought
p > F Variance component p > F Variance component p > F Variance component

Loc 0.4482 0.1667 <.0001

Year 0.3007 0.6387 NA

Loc(Rep) <0.0001 <0.0001 <.0001

Loc × Year <0.0001 <0.0001 NA

Genotype <0.0001 0.6232 <0.0001 288.4000 <.0001 0.0060

Genotype × Year 0.0011 0.0411 0.048 34.6184 NA NA

Genotype × Loc <0.0001 0.3133 <0.0001 193.9600 <.0001 0.0045

Genotype × Loc × Year <0.0001 0.1265 <0.0001 120.7800 NA NA

Residual 0.5590 197.4900 0.0029

Reliability (i2) 0.90 0.84 0.85

Abbreviation Loc, location.
aTQ was visually rated on a scale of 1–9, where 1 = lowest quality and 9 = excellent quality.
bPGC measured by unmanned aircraft systems (UAS) red, green, and blue (RGB) images calculating the percent live cover on a scale of 0–100 where 0 = no green cover
and 100 = all the leaves are green.
cNDVI measured by UAS multispectral images on a scale of 0–1, where 0 = no green cover and 1 = complete green cover.

in the Stillwater ME, and TifB20205 and TifTuf were best per-
formers in the other ME. The GEI for SG can be visualized
in Figure S4B. Three MEs were formed. Riverside was clas-
sified in a distinct ME. Citra, Stillwater, and Jackson Springs
formed an ME and the rest locations formed the third ME.
The best performer of Citra, Stillwater, and Jackson Springs
ME was Tahoma 31. TifB20205 was the best performer at the
Riverside ME. The best performer of the Jay, Dallas, Griffin,
and Tifton ME was TifTuf. The GEI for ER can be visu-
alized in Figure S4C. The first two components explained
81.2% of the phenotypic variation. Griffin was included in a
separate ME in which the fastest establishing genotype was
TifB20205. The other seven locations formed an ME and
TifTuf was the genotype with the fastest ER. For FCR, the
first two components explained 79.9% of the phenotypic vari-
ation and three MEs were observed (Figure S4D). The first
ME included Riverside, Dallas, and Citra, where TifTuf was
the best performer. The second one included Tifton, Jay, and
Jackson Springs, where the best performer was TifB20205.
Stillwater was in its own ME where TifB20208 was the best
performer. Three MEs were observed for IP and OSU2034
was the best-performing genotype in the ME of Riverside,
Dallas, Jay, and Tifton (Figure S4E). Stillwater and Grif-
fin were in two distinct MEs, where the best performer was
OSU2039 at Stillwater and the best performer for Griffin was
OSU2034. GEI for RP from drought injuries can be visualized
in Figure S4F. Jay, Citra, and Jackson Springs were in distinct
MEs. Riverside, Dallas, and Stillwater were grouped into an
ME where TifB20201 and TifTuf were best performers. For
PGC and NDVI collected from UAS, GEIs were visualized in
Figure S4G,H.

3.3 Turf performance index, stability, and
genetic gain

Due to the significant (p < 0.0001) genotype-by-location
interaction, Dallas and Stillwater formed a unique ME for
all traits under drought conditions. Therefore, we analyzed
the TPI across locations and separated them by ME. When
pooled all locations, OSU2081, TifB20201, and TifTuf all
had a TPI of 8 (Table 3). For the ME (ME1) formed by
Jay, Citra, Tifton, Griffin, Jackson Springs, and Riverside,
TifTuf had the highest TPI with 8, followed by experimen-
tal lines TifB20201 and TifB20205 (TPI = 6) (Table 3). In
the Dallas and Stillwater ME (ME2), OSU2073, OSU2081,
OSU2082, TifB20201, and TifB20205 had higher TPI than
TifTuf (TPI = 5). Due to significant (p < 0.05) genotype-
by-year and genotype-by-location interactions, the TPI for
each genotype without drought is summarized by trait and
location in Tables S5 and S6. For ER, TifTuf and experi-
mental line TifB20207 were top performers. For RP from
drought, TifB20201 and TifB20205 were top performers. For
SG, experimental lines OSU2037, OSU2018, and Tahoma
31 were top performers. The best performers for FCR, IP,
PGC, TQ, and NDVI were TifB20205, OSU2034, TifB20207,
TifB20205, and TifTuf, respectively (Table S5). When sum-
marized by locations (Table S6), TifB20205 was the top
performer in Citra, Dallas, Griffin, Jay, and Riverside. The
top performers for Jackson Springs and Tifton were FB1628
and TifB20207, respectively. Both TifB20206 and TifB20208
performed well in Stillwater.

To evaluate the performance and stability of genotypes
across years, the mean versus stability GGE biplots for traits
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YU ET AL. 7 of 14Crop Science

F I G U R E 1 Which-won-where genotype plus genotype-by-environment interaction (GGE) biplots for turfgrass quality (a), percent green cover

(b), and normalized difference vegetation index (c) in bermudagrass experimental lines and standards evaluated under drought conditions across

eight locations: Citra, FL; Dallas, TX; Griffin, GA; Jay, FL; Tifton, GA; Jackson Springs, NC; Stillwater, OK; and Riverside, CA from 2020 to 2023.

The sectors delineated by dotted lines represent distinct mega-environments, with locations grouped into the same mega-environment when they fall

within the same sector. The bolded genotypes positioned at the vertices of the polygon indicate the highest performing genotype(s) for each

corresponding mega-environment. PC1 and PC2 represent the first and second principal components, respectively. The values on the axes indicate

the proportion of the total variance explained by each component.

under drought conditions are presented in Figure 2. The top-
performing genotype is the farthest from the origin on the
x-axis on the left. The most stable genotype has the short-
est green dashed line on the y-axis. For TQ, the genotypes
TifB20201, TifB20202, TifB20203, TifB20205, FB1633, and
TifTuf showed high stability. In addition, the experimen-
tal line TifB20201 showed an excellent performance under

drought conditions. The top three most stable genotypes
for PGC were FB1633, TifB20202, and TifB20203. For
NDVI, the top stable performing genotypes were TifB20202,
FB1633, TifB20205, and TifB20204.

Since interspecific hybrid bermudagrasses are triploids,
they cannot be used as parents for further crossing. Genetic
gains in hybrid bermudagrass were calculated as the
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8 of 14 YU ET AL.Crop Science

T A B L E 3 Turf performance index (TPI) of percent green cover (PGC), turfgrass quality (TQ), and normalized difference vegetation index

(NDVI) under drought conditions from across all locations, Jay, Citra, Tifton, Griffin, Jackson Springs, and Riverside mega-environment (ME1) and

Dallas and Stillwater ME (ME2).

Entry

All locations ME1 ME2
TQ PGC NDVI Total TQ PGC NDVI Total TQ PGC NDVI Total

FB1628 0 2 2 4 2 3 0 5 0 1 0 1

FB1630 0 1 0 1 1 2 0 3 0 0 0 0

FB1633 1 2 2 5 1 3 0 4 1 1 2 4

FB2001 0 1 0 1 0 1 0 1 1 0 0 1

FB2002 0 1 0 1 0 1 0 1 0 0 0 0

NCWIN10F 0 1 0 1 1 2 0 3 0 0 0 0

OSU2015 0 1 0 1 0 1 0 1 1 0 0 1

OSU2018 0 1 1 2 0 1 0 1 0 0 1 1

OSU2021 0 1 1 2 0 1 0 1 0 0 1 1

OSU2022 0 0 0 0 0 0 0 0 0 0 0 0

OSU2026 0 1 0 1 0 1 0 1 0 0 0 0

OSU2034 0 1 0 1 0 1 0 1 0 0 0 0

OSU2035 0 1 1 2 0 1 1 2 0 0 1 1

OSU2037 0 0 0 0 0 0 0 0 0 0 0 0

OSU2039 0 0 0 0 0 0 0 0 0 0 0 0

OSU2043 0 1 1 2 0 1 0 1 1 0 1 2

OSU2066 0 1 0 1 0 1 0 1 0 0 0 0

OSU2073 3 3 1 7 2 3 0 5 3 2 2 7

OSU2074 0 2 1 3 0 1 0 1 0 1 0 1

OSU2075 0 2 1 3 0 1 0 1 1 1 1 3

OSU2081 3 3 2 8 2 3 0 5 3 2 2 7

OSU2082 2 3 1 6 1 2 0 3 2 2 2 6

OSU2088 0 1 0 1 0 1 0 1 2 1 1 4

OSU2094 0 2 1 3 0 1 0 1 1 1 2 4

OSU2101 0 1 1 2 0 2 0 2 0 0 0 0

OSU2102 0 1 0 1 0 1 0 1 0 0 0 0

Tahoma 31 0 1 1 2 0 1 0 1 0 1 0 1

TifB20201 3 3 2 8 3 3 0 6 3 1 2 6

TifB20202 1 2 2 5 1 3 1 5 2 1 2 5

TifB20203 0 3 1 4 2 3 0 5 1 1 0 2

TifB20204 0 2 1 3 1 2 0 3 2 1 1 4

TifB20205 2 3 2 7 3 3 0 6 2 2 2 6

TifB20206 0 3 1 4 1 2 0 3 0 1 1 2

TifB20207 0 3 1 4 1 3 0 4 1 1 1 3

TifB20208 0 3 1 4 0 3 0 3 1 2 1 4

TifTuf 3 3 2 8 3 3 2 8 2 2 1 5

Tifway 0 1 0 1 0 2 0 2 0 0 1 1

Note: The number in each column indicates the number of times each genotype ranked in the top statistical group. Darker green color indicates higher TPI value.

difference between check cultivar performance and the mean
of the top 10% genotypes, with results visualized in Figure 3.
For traits collected under drought conditions, when separated
by ME, positive genetic gains were observed as compared to
all commercial cultivars, including the most drought resis-

tance cultivar TifTuf in the industry, in the Dallas–Stillwater
ME. However, genetic gains, ranging from −2% to 30% for
TQ, from −6% to 51% for PGC, and from −6% to 12%
for NDVI were observed in the ME grouped by Jay, Citra,
Tifton, Griffin, Jackson Springs, and Riverside. Consistent
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YU ET AL. 9 of 14Crop Science

F I G U R E 2 The mean versus stability genotype plus genotype-by-environment interaction biplots of bermudagrass genotypes for turfgrass

quality (a), percent green cover (b), and normalized difference vegetation index (c) under drought conditions across eight locations: Citra, FL; Dallas,

TX; Griffin, GA; Jay, FL; Tifton, GA; Jackson Springs, NC; Stillwater, OK; and Riverside, CA from 2020 to 2023. PC1 and PC2 represent the first

and second principal components, respectively. The values on the axes indicate the proportion of the total variance explained by each component.

genetic gains were observed as compared to the long-term
industry standard Tifway, showing decades of breeding efforts
made significant improvement in drought resistance in turf
bermudagrass. Without drought conditions, solid improve-
ment was observed in IP. Breeding lines had more than 38%
improvement as compared to the best-performing cultivar
Tifway for seedhead reduction. The top 10% of experimen-
tal lines showed more than 10% improvement as compared
to all three standards in recovery post drought. We observed

positive genetic gains in other traits under non-drought as
compared to all commercial cultivars, except TifTuf.

4 DISCUSSION

This study reports the improvement in drought resistance
and performance-related traits of advanced breeding lines
recently developed by four breeding programs as compared
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10 of 14 YU ET AL.Crop Science

F I G U R E 3 Genetic gains of turfgrass quality (TQ), spring green-up (SG), establishment rate (ER), fall color retention (FCR), inflorescence

prolificacy (IP), recovery potential (RP), percent green cover (PGC), and normalized difference vegetation index (NDVI) in advanced bermudagrass

lines under and without drought stress as compared to standard cultivars Tifway, Tahoma 31, and TifTuf. The genetic gains under drought conditions

are separated by mega-environments (ME). The ME1 includes Jay, Citra, Tifton, Griffin, Jackson Springs, and Riverside. The ME2 includes Dallas

and Stillwater. The genetic gains under non-drought conditions are presented all together

to three commercial standard cultivars, Tahoma 31, TifTuf,
and Tifway. In the study, both PGC and NDVI derived from
high-throughput phenotyping (HTP) were incorporated into
data analysis with visual ratings. Different from traditional
digital measurements collected on the ground, HTP using
drone-mounted RGB and multispectral sensors is a proven
method in turfgrass research, especially for breeding pro-
grams to evaluate many experimental lines frequently and
rapidly (Vines & Zhang, 2022; Zhang et al., 2019). Interest-
ingly, PGC measured by an RGB sensor had higher reliability
estimates compared to traits measured by multispectral sen-
sors, suggesting that RGB sensors are a more reliable option
to quantify turfgrass performance than multispectral sensors.
The reliability estimates for most adaptive traits, especially
drought resistance was greater than 0.8 (Table 2; Table S4),
suggesting that the expression of these traits in the tested
lines is less influenced by environments and that the trials
were carried out with less errors. The reliability estimates of
an early-stage selection trial and a mapping population were
slightly lower for adaptive traits, such as SG (Gouveia et al.,
2020; Yu et al., 2022; Yu, Fontanier, et al., 2023).

Due to the relatively large number of locations for testing
the experimental lines, we were able to investigate GEI to
identify MEs. For traits collected under drought conditions,
we observed that Dallas and Stillwater were grouped into an
ME for all traits (Figure 1). Dallas and Stillwater are both
located in the south-central United States, showing similar cli-
mates and rainfall patterns (Figure S1). It was expected that
the drought performance of bermudagrass genotypes at River-

side would be more similar to Stillwater and Dallas than other
locations as these three locations received less rainfall than the
other locations. However, Riverside grouped with the eastern
locations (Figure 1). Based on MEs observed in this study,
two locations, one in south-central and one in southeastern
United States, are needed to evaluate drought resistance of
bermudagrass. In addition, the larger phenotypical variations
(Figure S3) among the experimental lines evaluated in the
south-central region than the south-eastern region indicated
that the south-central region provides better environments
to test drought resistance. The prolonged drought season in
the south-central region allows fuller expression of drought
resistance in the field.

For traits without drought stress, GEI existed for ER, FCR,
RP, SG, and TQ. The other traits, such as IP, NDVI, and
PGC, did not show GEI since the genotype effect explained
much of the phenotypic variance while GEI explained less
than 1%. For FCR, Riverside and Stillwater were in the same
ME in which Riverside was the most discriminative loca-
tion to separate FCR performance (Figure S4D). Riverside
would be an ideal location compared to the others to select
elite genotypes if the goal is focused on FCR improvement.
Meanwhile, breeding programs like OSU and NCSU have
focused on improving freeze tolerance, which is negatively
associated with chilling temperature tolerance in bermuda-
grass (Fontanier et al., 2020). Some genotypes from OSU
exhibited poor FCR performance, while multiple genotypes
from the breeding programs in the South showed better FCR.
For SG, we observed a greater GEI at Stillwater and Jackson
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YU ET AL. 11 of 14Crop Science

Springs, which were in the same ME (Figure S4B). It is not
surprising that these higher latitude locations can differentiate
winter hardiness of the experimental entries better than other
warmer locations. For TQ, Stillwater was a single unique ME
and the similar finding has been reported by Gouveia et al.
(2020).

Higher genetic gains in drought resistance were found
compared to Tifway and Tahoma 31. Tifway was released
in the 1960s but is still a popular cultivar worldwide. The
higher genetic gain summarized 60 years’ progress in drought
resistance improvement. In this study, Tahoma 31 showed
improvement in drought resistance as compared to Tifway.
But Tahoma 31 was selected and released primarily for
improved winter hardiness (Wu et al., 2020). TifTuf released
in 2014 was selected for drought resistance (Schwartz et al.,
2018). Therefore, the relatively low genetic gains as compared
to TifTuf suggested the slow improvement in the recent years,
consistent with the conclusion by Hall and Richards (2013).
Genetic gain in turf-type bermudagrass is often limited by
its long breeding cycle, the sterility of interspecific offspring
which cannot be backcrossed to enrich favorable traits, and
research resources to evaluate more germplasm. However,
this study clearly indicated that significant genetic improve-
ment has been achieved in drought resistance of turf-type
bermudagrass by the breeding programs (Figure 3). Under
drought conditions, we calculated the TPI across all loca-
tions and separated them by MEs. OSU2081 and TifB20201
were comparable to the drought resistance standard cultivar,
TifTuf across all locations and years. However, in the Dal-
las and Stillwater ME, OSU2081, OSU2082, TifB20201, and
TifB20205 showed improved drought response over TifTuf
(Table 3). It has been predicted that climate change and
global warming will increase the evapotranspiration rate of
turfgrass, leading to a quick onset of drought stress, high-
lighting the need for greater efforts in improving drought
resistance (Kerr, 2007). Recently, several quantitative trait
loci (QTL) have been identified in bermudagrass drought
resistance (Yu et al., 2022, 2025). Once these QTL are verified
and converted to breeder friendly molecular markers, the inte-
gration of marker-assisted selection and HTP could increase
the selection accuracy. Thus, more genetic gain could be
achieved in improving bermudagrass drought resistance in the
future.

Since the first recorded introduction of bermudagrass to
Savannah, GA, in 1751, bermudagrass has been grown and
become the major turfgrass in the southern and transitional
climatic regions of the United States (Juska & Hanson, 1964).
The early breeding efforts led by Dr. Glenn Burton at USDA-
ARS Coastal Plain Experiment Station focused on improving
TQ and adaptation to different turf use purposes. Later
bermudagrass breeding efforts were targeted towards improv-
ing stress resistance/tolerance while maintaining high quality.

For instance, Tahoma 31 has improved winter hardiness and
decreased evapotranspiration rate, and TifTuf has improved
drought resistance, while both produce high TQ (Amgain
et al., 2018; Yu, Martin, et al., 2023). Different drought
tolerant mechanisms, including synthesis of phytohormone
ABA and various amino acids exists in bermudagrass (See-
lam & Jespersen, 2025). Drought avoidance mechanisms,
such as deep and extensive root structures, affect the overall
drought resistance of bermudagrass (Gopinath et al., 2022).
Various avoidance and tolerance mechanisms enable breed-
ers to use different strategies in selecting drought resistance
of bermudagrass genotypes. Breeders should also integrate
drought resistance, high TQ, and performance stability in
cultivar development programs. The observed reduction in
IP among these breeding lines as compared to commercial
cultivars TifTuf and Tahoma 31 in this study demonstrated
significant genetic improvement for this trait (Figure 3). This
progress is particularly notable as IP showed minimal corre-
lations with other key traits targeted for enhancement in the
breeding programs (Figure S5). Fewer seedheads not only
benefit TQ, but also reduce energy lost for inflorescence
production, and decrease the mowing requirement, resulting
in management cost reduction. The large GEI for turf per-
formance under drought conditions implied that developing
regionally adapted cultivars is a more realistic target than
cultivars with stable performance across multiple geographic
regions (i.e., the southeast, southwest, and transition zone in
the United States) (Figure 1). Similarly, major food crops
like wheat (Triticum aestivum L.) and rice (Oryza Sativa L.)
showed strong GEI, so locally adapted cultivars are devel-
oped and used (Coast et al., 2022; Liang et al., 2015). Several
experimental lines in this study showed significant drought
resistance improvement in the south-central region. These
elite breeding lines, if released for commercial production,
would provide better choices than the existing cultivars for
water conservation in the region.

5 CONCLUSIONS

In this study, we evaluated the performance of advanced
breeding materials in eight locations under both drought and
no-drought conditions over 4 years. Under drought conditions,
Dallas and Stillwater constituted a unique ME and six other
locations formed another ME for turf bermudagrass perfor-
mance. In the six-location ME, experimental lines TifB20201
and TifB20205 showed similar performance to TifTuf. In the
Dallas and Stillwater ME, OSU2073, OSU2081, OSU2082,
TifB20201, and TifB20205 exhibited superior drought resis-
tance to TifTuf, Tahoma 31, and Tifway, highlighting positive
genetic gains. Several top-performing experimental lines
produced much fewer seedheads than the standard cultivars.
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